
Fabricable Tile Decors

WEIKAI CHEN∗, The University of Hong Kong, USC Institute for Creative Technologies
YUEXIN MA∗, The University of Hong Kong
SYLVAIN LEFEBVRE, INRIA
SHIQING XIN, Shandong University
JONÀS MARTÍNEZ, INRIA
WENPING WANG, The University of Hong Kong

Fig. 1. Given a target surface and a set of user-specified tiles (top left), our method produces a dedicated packing of tiles that is optimized for fabrication
(bottom left). The results are printed as independent flat patches (second column) with integrated hinges and snap-fit joints. The patches are folded and
assembled into the final object (third column); in this case a functional handbag that can carry light objects.

Recent advances in 3D printing have made it easier to manufacture customi-

zed objects by ordinary users in an affordable manner, and therefore spurred

high demand for more accessible methods for designing and fabricating

3D objects of various shapes and functionalities. In this paper we present

a novel approach to model and fabricate surface-like objects composed of

connected tiles, which can be used as objects in daily life, such as ornaments,

covers, shades or handbags.

Our method is designed to maximize the efficiency and ease of fabrication.

Given a base surface and a set of tile elements as user input, our method

generates a tight packing of connected tiles on the surface. We apply an

efficient and tailored optimization scheme to pack the tiles on the base surface

with fabrication constraints. Then, to facilitate the fabrication process, we

use a novel method based on minimal spanning tree to decompose the set

of connected tiles into several connected patches. Each patch is articulated

and can be developed into a plane. This allows printing with an inexpensive

FDM printing process without requiring any supporting structures, which

are often troublesome to remove. Finally, the separately printed patches are

reassembled to form the final physical object, a shell surface composed of

connected user-specified tiles that take the shape of the input base surface.

We demonstrate the utility of our method by modeling and fabricating a

variety of objects, from simple decorative spheres to moderately complex

∗
Joint first author

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association

for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3130800.3130817.

surfaces, such as a handbag and a teddy bear. Several user controls are

available, to distribute different type of tiles over the surface and locally

change their scales and orientations.

CCS Concepts: • Computing methodologies→ Mesh geometry models;

Additional Key Words and Phrases: fabrication, tiles, packing, foldable.

ACM Reference format:
Weikai Chen, Yuexin Ma, Sylvain Lefebvre, Shiqing Xin, Jonàs Martínez,

and Wenping Wang. 2017. Fabricable Tile Decors. ACM Trans. Graph. 36, 6,
Article 175 (November 2017), 15 pages.

https://doi.org/10.1145/3130800.3130817

1 INTRODUCTION
Additive manufacturing is paving the way to mass customization,

enabling ordinary users to create their own version of a base pro-

duct and customizing it in creative and beautiful ways. With the

increasing availability of 3D printers in FabLabs and homes, users

can fabricate their customized objects directly in a wide variety

of colors and materials. However, design customization remains

a difficult task for non-expert users. Hence, there has been signi-

ficant research dedicated to providing computational support for

customization of shapes, materials, and functionality of 3D objects.

For instance, researchers have focused on shape optimization for

balancing [Prévost et al. 2013], creating spinnable objects [Bächer

et al. 2014], turning surfaces into physical filigrees [Chen et al.

2016], designing wind instruments [Li et al. 2016; Umetani et al.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 175. Publication date: November 2017.

https://doi.org/10.1145/3130800.3130817
https://doi.org/10.1145/3130800.3130817


175:2 • Weikai Chen, Yuexin Ma, Sylvain Lefebvre, Shiqing Xin, Jonàs Martínez, and Wenping Wang

2016], lampshades [Zhao et al. 2016] and helping users maintain

fabricability during modifications [Shugrina et al. 2015].

In this paper we study the modeling and fabrication of customized

decoration patterns obtained by packing together distinct decorative

elements, or tiles. Such patterns are ubiquitous in fashion and design;
hobbyists often create them by juxtaposing existing decorations, e.g.

stickers or decals. Our goal is to enable non-expert users to digitally

model such decoration on a base surface with a set of flat tiles. Taken

together, these tiles are joined by hinges and connectors to form an

articulated object that takes the shape of the input surface and can

be fabricated using a home printer (see Figure 1).

This is a challenging problem as the tiles must be closely packed

and properly connected to each other in order to define a shell-

like object. Furthermore, fabrication is made difficult by the hollow

nature of the shape. Printing directly with a filament printer requires

a large amount of support structures. Besides wasting time and

material, the supports are particularly difficult to remove as they

end up enclosed within the shape itself (see Figure 2). Even on a

high-end powder-based system (e.g. SLS), the part occupies a large

volume while using little material. It is thus not very efficient to

print, as only few objects can be made in a single batch. Therefore,

there is no easy option to efficiently print such objects on widely

accessible printers.

Our approach directly takes fabrication constraints into account.

The constituent tiles of the synthesized object are joined by hinges

instead of rigid connectors. This allows neighboring tiles to rotate

with respect to one another. Instead of producing a single final

object for printing, we propose to decompose the synthesized shell-

like object into a small number of connected tiles subsets, which

we call patches. We carefully place the hinges to ensure that the

patches are developable, and output each patch in its developed (flat)

configuration. This has a major advantage: all the tiles of a patch

as well as their connecting hinges can be printed flat on a low-cost

filament printer, in a single print session. No support is required.

After printing, all patches are folded and assembled back together,

using snap-fit connectors printed along their boundaries. The result,
locked in its final position, is the desired shell-like object.

The main contributions of this paper are:

(a) Tree supports (b) Standard supports (c) Inner view of (b)

Fig. 2. Directly printing tile decors on a filament printer requires support.
(a) Tree support structure. Several tiles are incorrectly printed as highligh-
ted within the red rectangles. (b) Standard, downward extrusion support
structure. (c) Inner view of (b). A large amount of support is required, and it
is not easily accessible for removal.

• A new approach to fabricate shell-like flexible objects com-

posed of user-specified tiles in an affordable and easy way,

using a standard filament printer. Such objects can be used

as objects in daily life, such as ornaments, covers, handbags,

etc. (see Figures 1, 19).

• A novel packing algorithm on surfaces that is specifically

tailored to take into account connectivity constraints and

fabrication considerations.

• A new segmentation method that decomposes the network

of connected tiles into a small number of developable patches

in order to facilitate the fabrication of these patches without

supports on a standard filament printer.

2 PREVIOUS WORK
Art and design. As early adopters of additive manufacturing, ar-

tists are constantly pushing the boundaries of fashion and design.

Among the many examples of this trend, Nervous System [Rosen-

krantz and Louis-Rosenberg 2007] has produced beautiful flexible

designs made of many interconnected triangles – the resulting ob-

jects are bracelets, necklaces or even full dresses. The flexibility is

obtained by placing hinges in between the triangles of a densely

tessellated initial flat surface. As a result, the designs can be printed

flat, pre-assembled, on low-cost printers.

While this is a key inspiration for us – in particular showing

the importance of taking into account printability concerns in the

design itself – our goal is different. We seek to produce 3D structures

made of packed, arbitrary shaped tiles. We do not have a base flat

contour to work from, and we approximate a target 3D surface.

Pattern synthesis. Several recent works consider the problem of

decorating surfaces to turn them into printable objects, with the

same purpose of customization for 3D printing. Zhou et al. [2014]

synthesize connected patterns along curves, and use their approach

to model fabricable 3D objects. Dumas et al. [2015] modify tex-

ture synthesis to account for structure and rigidity, and synthesize

printable 3D patterns that cover a base surface. Chen et al. [2016]

synthesize filigree-like structures along surfaces. Their approach

is close to ours since the input is a set of base elements and a tar-

get surface. However, they relax the packing problem by allowing

appearance-preserving overlaps between elements. This produces

appealing patterns, but cannot guarantee their base shape is preser-

ved, and thus forbids the use of patterns with a semantic meaning

(e.g. a fish, a heart, a letter). Zehnder et al. [2016] explore the inte-

ractive design of curve networks onto surfaces. The user positions

curve elements (visually similar to a bent wire) onto a surface. The

curves are simulated as elastic rods, giving a very natural feel to

their deformations, while intersections are disallowed to preserve

their appearance. Tight packings are achieved thanks to deforma-

tions. This approach produces beautiful, airy curve networks that

can be fabricated on high-end printers.

All the aforementioned techniques output complex yet hollow 3D

geometries that are challenging to print. In contrast, our approach

strives to produce an easy and efficient to print output.

Packing onto surfaces. The packing of shapes into the plane is an

important topic of research with many industrial applications (e.g.

textile). However, packing on surfaces has been less explored. Lai et

ACM Transactions on Graphics, Vol. 36, No. 6, Article 175. Publication date: November 2017.



Fabricable Tile Decors • 175:3

al. [2006] andDos Passos et al. [2009; 2008] proposedmethods for cre-

ating mosaics on surfaces using convex planar tiles. Hu et al. [2016]

recently proposed an approach for surface mosaics that supports

irregular planar tiles. It operates through iterated continuous and

combinatorial steps. Ma et al.[2011] and Roveri et al.[2015] con-

sider a data-driven synthesis of packings from exemplar elements.

Schumacher et al. [2016] present stenciling, a complementary work

to ours, which brings together element packing and structural opti-

mization in an elegant, joint optimization. Stenciling approximates

each tile as a circle in a packing objective, making it solvable by a

gradient-based method. That is however not ideal in our scenario

as we seek for dense packing. The approximation would lead to

difficulties for joint placement along concave tiles, as the actual

tile boundary differs significantly from a circle. Other techniques

consider pattern distributions by locally mapping 2D elements (i.e.

decals) onto surfaces, e.g. [Lefebvre et al. 2005; Schmidt et al. 2006;

Wang et al. 2016a]. These are less suited to our needs as we seek to

preserve the planarity of the packed elements.

In this work we use the approach of Hu et al. [2016] as a compari-

son baseline regarding packing quality; please refer to supplemental

material. It is worth noting, however, that the problem settings

are different. The aforementioned techniques are geared towards

mosaicking, where large numbers of relatively small tiles are pla-

ced. We instead have to use fewer tiles, large with respect to object

curvature, to accommodate for fabrication constraints.

Fabrication from sheets and wires. Several recent works focus on
helping users fabricate shapes from simpler materials. Miguel et

al. [2016] optimize wire sculptures that approximate input surfaces.

Iarussi et al. [2015] present an approach for wire jewelry design.

Other approaches consider fabrication from paper or similar planar

sheets. The original surface is unfolded into charts [Shatz et al. 2006]

or strips [Mitani and Suzuki 2004; Takezawa et al. 2016] which can be

cut, folded and assembled to approximate the input. Fabrication from

flat surfaces has also been studied for modeling large objects from

laser cut wood pieces [Cignoni et al. 2014], for modeling tight-fit

cloths from 3D scanners by automatic flattening [Zhang et al. 2016],

to fabricate surfaces that self-fold under the action of heat [Kwok

et al. 2015], to fabricate iris folding patterns [Igarashi et al. 2016]

and to fabricate wire mesh sheets [Garg et al. 2014] and auxetic

planar materials [Konaković et al. 2016].

While our approach shares the idea of assembling from planar

patches, our problem setting is very different as we consider net-

works of rigid planar tiles along the surface, and exploit 3D printed

hinges to fold patches into shape.

3D printing large objects. Solutions have been proposed for prin-

ting large objects, which either do not fit the printer, or occupy a

large volume compared to their material use. A first set of methods

decompose a shape into smaller parts, for later assembly [Luo et al.

2012]. Other methods additionally consider how to pack the parts

together for printing [Attene 2015; Chen et al. 2015; Vanek et al.

2014]. Wang et al. [2016b] decompose objects into smaller parts for

maximizing print quality, changing the print direction of each sub-

part. Finally, Song et al. [2016] decompose large objects into small

pieces that are 3D printed and then fixed to an internal, laser-cut

structure.

The tile packings generated by our approach are not an ideal

input for the aforementioned methods, as cross sections are thin

everywhere. By proposing a method specifically tailored to our

outputs, we are able to introduce rotational degrees of freedoms

between tiles and can fully unfold large patches, maximizing print

efficiency.

3 OVERVIEW
Our approach starts from a set of user-specified tiles, and a target

surface represented by a triangular mesh S. The output is a set of

foldable patches that (1) can be printed flat without support and (2)

aremade of tiles interconnected by hingeswith a rotational degree of

freedom. Each patch can be folded and assembled with other patches

in order to approximate S (see Figure 1). We refer to the surface

assembled from the synthesized tile patches as the tile network (see
Figure 11a). The tile network is optimized to approximate the target

surface. The user can optionally specify a varying tile scale and

orientation field along the surface, as well as choose different tiles in

different parts of the surface. Note that our objective is to provide an

efficient approach for fabricating tile decors that can stand on their

own (e.g. bag, vase, teddy bear), as well as form covers over objects

(lampshade). We have incorporated a simple physical simulation

that considers both gravity and common pinch forces (Section 5.3.1),

but the tile decors in our case are indeed not appropriate to carry

large loads. Nevertheless, our experiments have shown that the

printed results maintain their shape in daily use (Fig. 19).

Fabrication Constraints. In order to connect adjacent tiles, parts

of the tiles need to be carved out so as to insert joints (see Figure 3).

However, the tiles may contain narrow features and concavities. As

illustrated in Figure 4, we need to take care to position the tiles such

that they face each others along sufficiently large areas, allowing

for creating cavities to insert joints. In addition, a tile typically has

multiple connectors and we have to avoid conflicts – overlaps –

between different cavities (see Figure 14). Our approach does not

support tiles that are thin everywhere, e.g. thin wire–like structures,

as they offer no space for connectors.

3.1 Pipeline overview
Our framework consists of two main steps: tile packing and patch
extraction. During tile packing, tiles are densely packed over the base
surface. The tiles are kept aligned with the tangent plane passing

through their centroid so that the result covers the base surface,

which is convenient to produce tile networks that cover a given

object.

Unlike conventional packingmethods which solely focus onmaxi-

mizing surface coverage [Hu et al. 2016], we seek to produce a dense

packing of irregular tiles that 1) satisfies fabrication constraints and

2) follows the target surface as closely as possible. This results in a

complex optimization problem, with both non smooth and combi-

natorial aspects (number of tiles, interlocking of concavities). We

therefore propose a dedicated optimization that can jointly optimize

the positions, scales and orientations of the tiles in order to enforce

fabrication constraints and approximate the base surface. We detail

the tile packing in Section 4.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 175. Publication date: November 2017.



175:4 • Weikai Chen, Yuexin Ma, Sylvain Lefebvre, Shiqing Xin, Jonàs Martínez, and Wenping Wang

(a) Top view, attached (b) Top view, detached

(c) Top view (d) Bottom view

Fig. 3. (a,b) Hinge joint. Note that (b) is only for showing the inner structure
of hinge joint as it is always printed attached. (c,d) Snap-fit joint. Note
that for those snap-fit joints that are internal to a patch, their bar will be
printed vertically but would be folded down to connect adjacent tile during
assembly.

(a) Failure case (b) Correct configuration

Fig. 4. Illustration of fabrication constraints. The nearest points between
two neighboring tiles will host the joint. (a) Failure case. Neither of the
hosting points has sufficient space to be curved out in order to insert a joint.
(b) Correct configuration. A joint can be safely inserted as either of the
hosting points can provide sufficient cutting area.

After packing, we divide the tile network into several flat, fol-

dable patches. We resort on two types of joints for connecting the

tiles: hinge joints (Figure 3a), which allow rotations between two

connected tiles, keeping their inter-distance constant; and snap-fit

hinge joints (Figure 3c), which are printed disconnected and later

assembled to connect tiles within and across patches. For the sake of

clarity, we refer to the later type of joints simply as snap-fits. After

assembly, hinges and snap-fits impose distance constraints between

the tiles, locking the assembled patches into a stable surface in most

cases. The details of patch extraction are discussed in Section 5.

4 TILE PACKING
In this section, we detail our tailored optimization tile packing al-

gorithm. Dense packings of irregular flat tiles (mosaicking) cannot

be optimized via traditional gradient based approaches [Hu et al.

2016]. Compared to mosaicking, we also face additional constraints:

fabrication imposes the use of fewer tiles that are relatively large

(a) Input tile (b) Sampled points

Fig. 5. The tiles are represented by samples along their contour.

compared to surface curvature (this stems from limitations in mini-

mal printable feature size and maximum object size). This makes

packing even more difficult, especially as the tiles remain planar

and rigid. We also have to ensure that the tiles are neighboring in a

way that allows the insertion of connectors.

Our approach is based on a two-phase attract-and-repulse me-

chanism that iteratively refines an initial layout towards our goal.

Figure 6 illustrates the idea behind the proposed mechanism. (1)

We first initialize the distribution of tiles by enforcing that each

newly placed tile has a limited overlap with existing ones. (2) Du-

ring the attraction phase, tiles are attracting each other to form

near-uniform overlaps. The fabrication constraints are considered

during optimization. After tile attraction, empty spaces may appear

providing room for adding new tiles. This progressively increases

surface coverage (Figure 6c). The attraction phase iterates until no

more tiles can be added. (3) The repulsion phase resolves remaining

tile overlaps by encouraging tiles to repel their neighbors. This is

achieved by adaptively scaling tile sizes and optimizing both tile

placement and orientation. We stop the repulsion phase when a

uniform inter-spacing among tiles is achieved.

4.1 Tile representation
We input tiles as 2D closed boundary polygons in the XY plane,

with the origin at their centroid. During optimization, we only

consider a sampling of the contours, as shown in Figure 5b. We

use two different samplings for performance reasons: the finest is

a sampling with a spacing of 2 mm and the coarsest is a sampling

with a constant number of 20 samples per tile. The 3D geometry

of the tiles is reconstructed during post-processing. The tiles may

only be uniformly scaled during optimization, and are otherwise

kept unmodified.

4.2 Initialization
We initialize the tile distribution following multi-class blue noise

sampling [Wei 2010]. We made this choice as it provides a reaso-

nably good initialization while accommodating for simple controls

regarding mixing different tiles and considering overlaps.

New tiles are placed around the boundary of existing tiles, follo-

wing a dart-throwing procedure. We accept a new tile position if it

satisfies both of the following criteria: (1) it slightly overlaps with

existing tiles; and (2) the overlapping ratio with each existing tile

is below a given threshold. This encourages a dense initialization –

ACM Transactions on Graphics, Vol. 36, No. 6, Article 175. Publication date: November 2017.



Fabricable Tile Decors • 175:5

(a) Initialization (b) Tile attraction (c) Add new tiles (d) Tile attraction again (e) Repulsion phase

Fig. 6. Tile packing algorithm. (a) Initialization. (b-d) Attraction Phase. During the attraction phase, we encourage each tile to stay close to neighbors while
maintaining near-uniform overlaps (b). This strategy makes room for adding new tiles so as to increase surface coverage (c). In this case, four new tiles
(highlighted with yellow) are added in now empty regions. (d) We iterate until no more tiles can be added. (d) Repulsion phase. We encourage each tile to
repel its neighbors to resolve any remaining overlap. This is achieved via adaptively scaling the tile sizes and optimizing both the tile positions and orientations.

overlaps are resolved later. This process is repeated until a maximum

number of trials has been reached (1500 in our implementation).

If no control field is provided, i.e. orientation is free, we optimize

the orientation of the newly positioned tile so as to increase the

possibility of placing hinges between neighbors, as will be detailed

in Section 4.3.2. If, however, a control field is provided, the new tile

is scaled and orientated as dictated by the control field at the tile

insertion position. The tile position is then immediately optimized

to maximize its hinge area, as detailed in Section 4.3.1. Immediately

optimizing inserted tiles limits the creation of bad local cases for

the following global optimization steps.

Using different tiles. When using different tiles, we found it neces-

sary to explicitly encourage mixing. Specifically, for tiles belonging

to different classes the overlap area should not exceed 20% of the

area of the tiles, while the threshold is reduced to 5% for tiles of

the same class. This encourages tiles from different classes to be

neighbors while prohibiting tiles of a same class from staying too

close, which is demonstrated in Figure 6a.

4.3 Attraction phase
The attraction phase distributes and optimizes the position of the

tiles to bring them closer together. The optimization variables are

the number of tiles, the positions of their centroids along the surface,

their sizes (uniform scaling), and their orientations (angle around

normal).

4.3.1 Objective function. The objective function is a combina-

tion of three terms, designed to encourage the tiles to come closer

together (neighborhood distance) while fitting the surface (local

surface approximation) and allowing for hinge placement (hinge

area).

Neighborhood distance. We define the set of direct neighbors Ni
of a tile Ti as the set of tiles that are overlapping Ti , e.g. Ni =

plane of Ti

plane of Tj

projection plane

pi

p’i

pj

p’j

Fig. 7. Common projection plane of Ti and Tj (side view).

{Tj |Ti ∩ Tj , ∅, j , i}. The intersection is tested after projecting

each tile to a common projection plane, which is orthogonal to the

bisector plane of the support planes of Ti and Tj (dashed line in

Figure 7).

We define the neighborhood distance between a tile Ti and its

neighborhood Ni as:

dist(Ti ,Ni ) = max

pj ∈PNi
(dist(pj ,Ti )) (1)

where PNi is the point set formed by the union of all the sample

points of the tiles in Ni that lie inside Ti (green dots in Figure 8).

dist(pj ,Ti ) returns the shortest distance of point pj to the boundary
of Ti . Since Ti and the tiles in Ni are not coplanar, we project the

points in PNi onto the plane of Ti to perform all the distance com-

putations. dist(Ti ,Ni ) evaluates to a large value ifNi = ∅ (i.e.Ti has
no overlaps). Intuitively, minimizing dist(Ti ,Ni ) encourages Ti to
be attracted to adjacent tiles while preserving a minimum overlap

with each neighbor when tiles come together.

Local surface approximation. The tiles are aligned with the tan-

gent plane of the base surface S at their centroid. In high-curvature

ACM Transactions on Graphics, Vol. 36, No. 6, Article 175. Publication date: November 2017.



175:6 • Weikai Chen, Yuexin Ma, Sylvain Lefebvre, Shiqing Xin, Jonàs Martínez, and Wenping Wang

regions this quickly leads to large deviations from S. We penalize

such configurations by defining the following approximation error

for a tile Ti :

approx(Ti ,S) = max

pi ∈Ti
(dist(pi ,S)) (2)

where dist(pi ,S) returns the (Euclidean) distance from point pi
to the closest point on S. Low values of approx(Ti ,S) indicate a
better local approximation of S by Ti .

Hinge area. The tile positions and orientations influence where

hinges can be added between neighboring tiles. We measure the

capacity of holding a hinge by using the local shape thickness – a

notion similar to the shape diameter defined in [Shapira et al. 2008].

For a 2D shape, we define the shape thickness at a boundary point

p as the diameter of the maximal ball centered at the medial axis

and tangential to p (as shown in Figure 9a). Larger values indicate

that it is more likely that an hinge can be placed at this location.

Whenever considering adjacent tiles (overlapped or not), we

would like them to be translated or oriented such that the potential

connection points have large local shape thicknesses. For the non-

overlapping tiles (Figure 9a), the connection points to place an hinge

are the two nearest points between the tile contours. As tiles may be

overlapping during optimization, we predict the connection points

of such cases as the middle point of the curve segment contained in

the other tile (Figure 9b). We denote the hinge area for a tile Ti as
Θ(Ti ,Ni ): it is computed as the sum of the local shape thicknesses

for all potential contact points between Ti and its neighbors.

Objective function. We finally define the global attraction ob-

jective function Eattract :

Eattract = α
∑
i
dist(Ti ,Ni )+ β

∑
i
approx(Ti ,S) −Θ(Ti ,Ni ) (3)

Eattract is a weighted sum of the neighboring distance, local ap-

proximation and hinge area terms, where α and β are controlling

the tradeoff. We set α = 1.0 and β = 1.5 as we found this achieved

a good tradeoff between packing performance and local approxima-

tion. β is set larger than α to penalize positions in high-curvature

regions.

During the attraction phase, our goal is to find a tile configuration

with the lowest value of Eattract .

4.3.2 Minimization. Eattract is a complex objective function

with a mixture of continuous and combinatorial terms: it cannot

be optimized directly by gradient-based methods. In addition, the

Fig. 8. Samples for the neighborhood distance (green dots).

p1 p2

(a) Non-overlapping tiles

2 p1p

(b) Overlapping tiles

Fig. 9. Potential joint positions. (a) Local shape thickness. The medial axis
of each shape is outlined by a dashed line. The medial balls at p1 and p2
are drawn in blue. (b) In case of overlap p1 and p2 are the midpoints of the
orange and green segment, respectively.

solution space for Eattract contains a vast number of possible con-

figurations, which emerge from combinatorial aspects (number of

tiles, interlocking of concavities), and its energy landscape is riddled

with local minima. Fortunately, many of these local minima will

produce configurations that are good enough to be used in practice,

and our algorithm is designed to find them efficiently. We rely on

a greedy strategy to locally optimize the configuration of each tile.

The pseudo-code for minimization is detailed in Algorithm 1. It

takes the following steps:

Position update. In algorithm PositionUpdate each tile is trans-

lated to a number of candidate positions (including the current

position), searching for a displacement producing a lower value

of Eattract . The candidate positions are randomly sampled within

the minimal circle centered on the centroid and fully enclosing the

tile. We test 400 positions in our implementation. The position with

lowest value is used to update the tile in the current iteration. Note

that if the user provided a scale control field, the tile is resized before

computing Eattract at each tested position.

In regions of high-curvature it is likely that no good update can

be found, as the tile plane misaligns with the surface. When all

the candidate positions for a tile Ti produce an approximation

error approx(Ti ,S) greater than a threshold τapprox , the tile is

shrunk at its current position. This favors smaller tiles in high

curvature regions. A minimum size constraint prevents tiles from

becoming too small. τapprox is determined before starting the at-

traction phase. The approximation errors of all tiles are computed

and sorted. τapprox is the average error of the top 20%.

Angle update. AlgorithmAngleUpdate optimizes the orientation

of each tile. Each tile is tested with different orientations while its

centroid remains fixed. If an orientation field is provided, we only

consider ±5 degrees deviations from the prescribed orientation (10

candidate angles); otherwise, we test all rotations with 1 degree

stepping (360 candidate angles). Among the candidate rotation an-

gles, we consider the top n with the lowest value of Eattract as

the candidate orientations (n = 10 in our implementation). Among

these, we select the one that provides the best opportunity to insert

an hinge, that is the angle that maximizes the minimum of local

shape thicknesses between the tile and its neighbors.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 175. Publication date: November 2017.



Fabricable Tile Decors • 175:7

Updating sequence. We process tiles in parallel, updating the tile

positions in independent sets similarly to the mechanism in [Chen

et al. 2016].

Increasing the surface coverage. The minimization of Eattract
leads to a compact packing of existing tiles, uncovering other parts

of the surface. Therefore, after position and orientation optimization

we add tiles to uncovered regions in AddMoreTiles. This is done

similarly to the initialization. The attraction phase stops if no more

tiles can be added.

Algorithm 1 Attraction

Input:
Target SurfaceS; Initial placement of tile set T on S ; Input scale
field F on S.

Output:
Optimized tile configuration TO that follows F on S .

1: repeat
2: T ← PositionUpdate(T , F );

3: T ← AngleUpdate(T );

4: stop←AddMoreTiles();

5: until stop
6: return TO = T ;

4.4 Repulsion phase
The second phase of the tile packing focuses on resolving overlaps

that remain after the attraction phase. In particular, we adaptively

scale each tile according to its distance to adjacent tiles, and en-

courage repulsion among neighboring tiles to evenly distribute tile

inter-spacing. A target gutter size (the gap between the nearest two

tiles)d is given as input to the algorithm. Our algorithm iterates until

there is no overlap between any two tiles and the minimal gutter

distance is larger than or equal to d (1 mm in our implementation).

4.4.1 Objective function. The objective function is designed to

push the tiles away from each others. We define a repulsion term

between two tiles Ti and Tj :

repulse(Ti ,Tj ) = min{ min

pi ∈Ti
sdist(pi ,Tj ), min

pj ∈Tj
sdist(pj ,Ti )} (4)

where sdist(pi ,Tj ) is the signed closest distance from point pi to the
point set sampled from Tj ’s contour:

sdist(pi ,Tj ) =

{
−minpj ∈Tj ∥Γ(pi ) − Γ(pj )∥ if pi inside Tj

minpj ∈Tj ∥Γ(pi ) − Γ(pj )∥ otherwise

(5)

where Γ(p) projects the point onto the common projection plane of

Ti and Tj , as illustrated in Figure 7.

The sign of repulse(Ti ,Tj ) indicates whether Ti and Tj overlap
with each other (negative values imply an overlap). The absolute

value of repulsemeasures how deeplyTi andTj penetrate each other
if they overlap, or how far they are separated from each other if

they do not.

During the repulsion phase we seek to maximize the value of

repulse between each tileTi and its adjacent neighborsAi . These are

the neighbors that are spatially close to the current tile and have to

be pushed away. Note that this neighborhood is different from the

one used during the attraction phase, denoted by Ni (Section 4.3.1).

Ai is defined asAi = {Tj |repulse(Ti ,Tj ) < σ , j , i}, that is, the set
of tiles closer toTi than a threshold distance σ . This is illustrated in

Figure 10 (σ = 6 mm in our implementation).

We then define the final objective function as:

Er epulse =
∑
i

min

Tj ∈Ai
repulse(Ti ,Tj ) (6)

Maximizing this objective increases the distance between each tile

and its adjacent neighbors.

Fig. 10. The adjacent neighborhood (in red) of the black tile are all the tiles
surrounding it while being closer than a threshold.

4.4.2 Maximization. We resort on a similar strategy as descri-

bed in Section 4.3.2 to maximize Er epulse . Algorithm 3 details the

procedure, which executes the following steps:

Scale update. To eliminate gaps and overlaps between tiles we

adaptively scale them according to the distances to their adjacent

neighbors. The pseudo code for ScaleUpdate is given in Algo-

rithm 2. We measure the size of a tile as the diameter of the smallest

enclosing circle centered on the centroid.

ComputeDistance returnsdi , the smallest value of repulse (Equa-

tion 4) between a tile and its adjacent neighbors. Assuming that

the current size of Ti is si , we compute in ComputeNewScale the

expected size of Ti in the next iteration as ki = si + (di − d)/2.0,
where d is the target gutter distance. We divide (di − d) by two as

Ti and its nearest neighbor change in size simultaneously. After

the expected size is computed for all tiles, ScaleToExpectedSizes

applies the actual scaling operations.

Position and orientation update. We follow a similar strategy as in

Algorithm 1 to locally update the positions and orientations of the

tiles. However, during each iteration, we seek to search for updates

that maximize Equation 6.

Termination. At each iteration we track the minimum distance

between closest neighbors dmin . If this value is larger than or equal

to the target gutter distanced the process terminates – all tiles are far

enough from their neighbors. Otherwise, the iterations continue up

to a maximum value. The overall process is illustrated in Figure 6e.

While there is no strict guarantee that the process converges,

we never observed cases where the maximum number of iterations

is reached: after initialization and attraction phase there is only a

ACM Transactions on Graphics, Vol. 36, No. 6, Article 175. Publication date: November 2017.



175:8 • Weikai Chen, Yuexin Ma, Sylvain Lefebvre, Shiqing Xin, Jonàs Martínez, and Wenping Wang

Algorithm 2 ScaleUpdate

Input:
Input tile layout T on S , target interspacing distance d ;

Output:
Updated tile layout TO with size adaptively scaled.

1: K := ∅; // vector that stores expected size of each tile
2: for each tile Ti ∈ T do
3: Ai ← FindAdjNeighbors(Ti );
4: di ← ComputeDistance(Ti , Ai );

5: ki ← ComputeNewScale(Ti , di );
6: K ← K ∪ {ki };
7: end for
TO ← ScaleToExpectedSizes(T , K );

8: return TO ;

limited amount of overlap, and these can be resolved without having

to apply excessive scaling to the tiles.

Algorithm 3 Repulsion

Input:
Target Surface S; Input tile distribution T on S ; Target inter-
spacing distance d ; Input magnitude field F on S.

Output:
Optimized tile configuration TO that follows F on S .

1: repeat
2: T ← ScaleUpdate(T );

3: T ← PositionUpdate(T , F );

4: T ← AngleUpdate(T );

5: dmin ←CheckDistance();

6: until dmin ≥ d or maximum iterations reached

7: return TO = T ;

5 PATCH EXTRACTION
We now consider the problem of connecting tiles with hinges and

snap-fit joints, thus forming patches that can be fabricated flat, fol-

ded and assembled to form the final 3D shape. The set of potential

hinges are the connections between a tile Ti and its adjacent neig-

hbors in Ai (see Section 4.4.1 and Figure 10). For two neighboring

tiles, the potential location of a hinge is in-between the two closest

points along the contours. We use the neighborhood information

to create a graph G that captures the tile network. Each tile Ti is a
node, and one edge is added for each adjacent neighbors Tj in Ai
(see Figure 11b). This graph is very densely connected since the tiles

are packed.

This section focuses on two questions: 1) how to segment the tile

network into foldable patches (Sections 5.1 and 5.2) and 2) how to

assign and optimize the hinge placement so that the final assembled

printout is fabricable and possibly stable (Section 5.3).

What we mean by stable is that the tiles are all locked in place

with respect to one another. This possibility stems from the fact

that taken all together the joints create a dense set of distance

constraints between the rigid tiles. These constraints hold the tiles

into a stable configuration – a property which is expected for a

closed convex polyhedron through Cauchy’s rigidity theorem, but

may not generally be true (e.g. a flat surface). Our algorithm attempts

to preserve this property while trying to reduce the number of

joints (Section 5.3.1). Note that if the shape is not stable even when

inserting all joints, the final result can still be fabricated but will

exhibit unconstrained degrees of freedom.

(a) Tile network (b) Tile graph

Fig. 11. Tile network and its corresponding graph. Note that (b) only shows
the graph for the tiles that are visible in (a). The red edges in (b) form a
spanning tree of the graph.

5.1 Extracting foldable patches
Decomposing a surface into developable/flattenable patches is a

well-studied field [Julius et al. 2005; Tang et al. 2016; Wang 2008].

However, conventional methods segment the surface into near-

developable patches and then deform the patches into fully develo-

pable ones. This may introduce distortions and mismatches between

the boundaries of adjacent patches. We propose a method better

suited to our application, based on the extraction of spanning trees.

It finds a segmentation that does not produce distortions when

flattening patches, and that maintains corresponding boundaries

between adjacent patches.

In particular, let us consider a case where the

tile graph G is a tree – it is easy to observe that

it could be flattened/unfolded: each hinge sepa-

rates the graph in two distinct parts which can

rotate freely around the hinge axis with respect

to one another. This notion is similar to the fol-

dability of the triangulation dual, where triangles are nodes and

edges are hinges [O’Rourke 1998], as illustrated in the inset. The

flattening/unfolding might however produce overlaps in the plane.

We build upon this idea and formulate patch extraction as a graph
partitioning problem: we seek to partition the graph G into a set of

spanning trees such that each tree can be unfolded.

5.2 Graph partitioning
We now describe how to partition the graph G (Figure 11b) into

a set of spanning trees. There are two fabrication requirements

for the graph partitioning problem. First, the size of the unfolded

geometry of each patch cannot exceed the extent of the printer

bed; second, the unfolding should not produce overlaps between

tiles. We propose a method to grow each patch in sequence while

considering the properties of its unfolded geometry.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 175. Publication date: November 2017.



Fabricable Tile Decors • 175:9

We decorate the graph with edge weights. Each edge weight

indicates the capability c(i, j) to insert a hinge between Ti and Tj
at two points pi and pj as described in Section 4.3.2 and Figure 9.

c(i, j) is equal to the average local shape thickness. A larger c(i, j)
indicates a larger space for inserting a joint.

In practice the hinges require smaller footprints than the snap-fits

(see Figure 3). Therefore, we encourage edges with lower c(i, j) to
become hinges. We thus seek to extract a minimal spanning tree
from G such that the edges with lower c(i, j) belong to the tree.

In the following, whenever selecting an edge to become a hinge

(or snap-fit) we first checkwhether the value of c(i, j) is large enough
to host the joint, and ignore the edge otherwise. Note that most

edges can host a joint: the packing algorithm specifically optimizes

tile orientations to achieve this.

We grow patches with the following process. We start from a tile

selected randomly. We then locally grow a subgraph by breadth-

first expansion. At each step of the growth, we extract a minimal

spanning tree and verify whether the flattening/unfolding of tree

is valid, in which case we continue growing the subgraph. The

unfolding is valid as long as it does not produce an overlap between

tiles and it fits the printer bed size. If the unfolding is not valid,

we return the last valid spanning tree as the next patch, and start

extracting a new patch. This is done until all tiles have been covered.

Algorithm 4 PatchGrow

Input:
Undirect weighted graph G; Index of starting tile Tk ; Size of

printing bed:w - width; l - length
Output:

A minimal spanning tree that is grown from tile Tk .

1: M = ∅;M .add(k); // vector that stores the patch nodes
2: q.push(k); // queue that stores pending nodes
3: Fout ; // output spanning tree
4: while !q.empty() do
5: t = q.pop();
6: N ← GetNeighbors(t , G);
7: for each j ∈ N do
8: M .add(j);
9: F ←MinimalSpanningTree(M);

10: pass ← Check2DPattern(F ,w , k);
11: if pass then
12: q.push(j); Fout = F ;
13: else
14: M .pop_back();
15: end if
16: end for
17: end while
18: return Fout ;

5.3 Snap-fits optimization
After patch extraction the set of hinges is fully determined (edges of

the spanning trees). However, the number and placement of snap-fit

joints is not fixed yet. This affects both the model stability and its

printability.

Ideally, we would like to minimize the number of snap-fits: they

have to bemanually assembled, and using toomany is likely to result

in non-printable configurations as they cannot be hosted in the tiles.

However, each snap-fit introduces a new distance constraint in

the final assembly, working towards locking the result in a stable

configuration. We thus seek for a proper amount of snap-fit joints

so that the final printout is both fabricable and stable.

Note that some tile networks simply cannot be made stable: this

depends on the input surface properties (see discussion in the intro-

duction of Section 5). In this section we assume that the tile network

is stable if all possibly snap-fit joints are inserted – thus, our ob-

jective during the snap-fit joint selection process is to preserve this

property. If a surface cannot be made stable, all possible snap-fit

joints will be inserted.

5.3.1 Snap-fit edges selection. A necessary condition for the

assembled printout to lock in a stable configuration is to have loops

in the connection graph – otherwise any leaf tile would be able

to rotate freely along its hinge. In addition, smaller loops increase

the set of constraints, further reducing the number of degrees of

freedom in the assembly. Based on these simple observations, we

optimize the selection of snap-fits to ensure each tile is captured

inside constraint loops of small size.

During the algorithm we check the stability of the assembly by

using a physics simulation (based on Bullet Physics [Coumans 2009]),

verifying whether the tiles remain fixed in space under the effect of

gravity and common pinch forces. The lowest point of the object is

fixed to the ground as we are not interested in checking for balance.

If the largest displacement exceeds 5 mm we consider the model

unstable.

Algorithm 5 details the process. The input consists of the graph

G and the set of edges that are already selected as hinges. The

remaining unselected edges become a pool for selecting snap-fits,

see Figure 13a. We filter out any edge in which tiles could not host a

snap-fit. We refer to edges that could become snap-fits as available.
The first step in Algorithm 5 is to construct initial loops so that

each tile node is captured within a certain cycle. This is implemented

in ConnectLeafNodes. We search all leaf nodes (degree 1) and add

an additional available edge to them, favoring closest neighbors. As

the graph is densely connected, and as the packing is optimized

to maximize the possibility to place joints, there is a very high

likelihood that such an edge exists. This is illustrated by the green

dashed segments in Figure 13b.

After removing leaf nodes, all tiles belong to cycles. The next step

is to achieve a denser connectivity. DetectMinimalCycles detects

the minimal cycles {Ci }. The value of k determines the maximal

accepted length for the cycles. If a cycle Ci is longer than k , more ed-

ges are added to it by searching for available edges connecting pairs

of nodes in the cycle, favoring closest neighbors. Thanks to the high

degree of connectivity in G many such choices exist. This process,

performed by EnhanceLargeCycles, is illustrated in Figures 13c

and 13d. Finally, TestStability checks whether the model is stable

with the current set of snap-fits. If not, the value of k is decreased

and another iteration adds more snap-fits. At worst the algorithm

terminates when all available snap-fits are added. Our algorithm is

capable to adapt the number and placement of snap-fits according

ACM Transactions on Graphics, Vol. 36, No. 6, Article 175. Publication date: November 2017.



175:10 • Weikai Chen, Yuexin Ma, Sylvain Lefebvre, Shiqing Xin, Jonàs Martínez, and Wenping Wang

Algorithm 5 SelectSnapFits

Input:
Graph G; A set of hinge edges E; Snap-fit hinge pool P ;

Output:
Result stability fstb ; A set of edges F in G that will be realized

by snap-fits.

1: k ← 15; fstb ← true;
2: G ′ ← ConnectLeafNodes(E);
3: while true do
4: {Ci } ←DetectMinimalCycles(G ′);
5: (F , G ′)← EnhanceLargeCycles({Ci }, k , P );
6: stable← TestStability(F , E);
7: if stable then
8: break;
9: else
10: if F == P then
11: fstb ← f alse;
12: break;
13: else
14: k−−;
15: end if
16: end if
17: end while

return (fstb , F );

to different input external forces. As shown in Figure 12, when lar-

ger external forces are imposed, our approach will automatically

enhance the structure with more connections.

(a) Input smaller external forces (b) Input larger external forces

Fig. 12. Results of inputting different external forces. 5N and 15N pinching
forces are imposed in (a) and (b), respectively. The forces are imposed on
both sides of bag symmetrically. The orange dot dictates the pressure point
on the front side while the blue arrow shows the force direction. As the
joints are designed to be embedded in an inconspicuous way, we highlight
the additional joints resulted from larger forces in the red rectangles in (b).
A closeup shows how a flower tile is strengthened.

We provide in the supplemental material an experiment showing

the effects of adding different numbers of snap-fit edges.

(a) Input spanning trees

(b) After connecting leaf nodes

(c) After adding snap-fits, k = 6

(d) After adding snap-fits, k = 4

Fig. 13. Adding snap-fit joints. The left column illustrates the graph, the
right column shows the physical simulation as more snap-fits are added.

5.3.2 Final joint assignments. After selecting the hinges and

snap-fit joints, there might exist overlaps between their geometries

(see Figure 14a). Hinges require space only for one of their ends

(the other simply protrudes out of the tile). Snap-fits require space

on both ends, one being slightly larger as shown in Figure 3d. This

results in a combinatorial problem where we attempt to resolve for

all conflicts, while swapping the joint ends assignment.

We proceed in two steps described in Algorithm 6. First, the

joint ends are evenly distributed by function EvenlyDistribute.

We define the "load" of a tile as the ratio between the number of

joint ends it hosts and its area. We distribute the joint ends while

attempting to achieve an even load across all tiles. We process the

tiles in a priority queue in order of decreasing load value. Each time

a tile is visited, the neighboring tiles are checked to assign the joint

ACM Transactions on Graphics, Vol. 36, No. 6, Article 175. Publication date: November 2017.



Fabricable Tile Decors • 175:11

ends such that the load is kept minimal.

This initial assignment might however create conflicts. To resolve

these we process the tiles in a priority queue by decreasing order

of number of conflicts. A conflict can be removed in two ways

in function ResolveConflicts: the first attempted is to swap the

ends of a joint; the second is to slightly move the joint attachment

along the tile boundary. These changes can produce a conflict on

a neighboring tile, and we therefore add any new conflict to the

queue. In rare cases the conflicts cannot be resolved: this is detected

whenever neither swapping nor moving the attachment works, or

when a new conflict is produced on an already processed tile. In

such a case we cancel the edge – a situation that occurred only

on one edge in all our experiments (Lamp in Figure 19). Figure 14

shows the effect of joint assignment optimization.

rotation cut plug cut socket cut

(a) Before optimization (b) After optimization

Fig. 14. Effect of joint assignment optimization.

6 IMPLEMENTATION AND FABRICATION
This section gives details regarding implementation and fabrication.

6.1 3D model generation
To generate model for fabrication, we first unfold each patch into

a set of 2D contours. The 3D model is constructed via adding a

thickness to the 2D pattern. Joints are embedded into the model via

boolean operations [Jacobson et al. 2016; Wang 2014].

Snap-fits internal to a patch are printed vertically (Figure 3) –

which avoids having to consider potential collisions. Other snap-fits

(across patches) are printed horizontally whenever possible, such

that the part inserted into the tile is hidden from view (this can be

seen on the printed patches in the second column of Figure 1).

6.2 Optimizations
We achieve better performance by using a coarser sampling. In

particular, the attraction phase resorts on a coarse sampling of the

tiles (20 samples per tile), followed by a first repulsion phase using

a coarse sampling. After this point the packing is almost finalized,

and we perform a final repulsion phase using the finest sampling

(2 mm spacing). This second repulsion phase terminates quickly as

only small overlaps – missed by the coarse pass – are resolved. We

provide timings in Section 7.4.

Algorithm 6 DistributeJoints

Input:
Initial placement of jointsH ; graph G;

Output:
An optimized distribution of jointsHout .

1: H ′ ← EvenlyDistribute(H , G);
2: Hout ← ResolveConflicts(H ′);

3: returnHout ;

7 RESULTS
In Section 7.1 we show several results produced with our method.

In Section 7.2 we present UI controls provided to help users cursto-

mize their designs. In Section 7.3 we compare our algorithm with

different state-of-the-art optimization algorithms. We provide exe-

cution timings in Section 7.4. In supplemental material, we discuss

convergence rate and surface packing quality.

7.1 Fabrication
We test our algorithm on a variety of models, from a simple sphere

to a teddy bear with high curvatures. Figure 1 and Figure 15 show

our fabrication results without control field and their corresponding

simulations. Tiles of various shapes are used to decorate the base

surfaces, including round convex shapes (e.g. sphere and egg) and

concave contours with thin features (e.g. the bird and fish pattern).

We fabricate all the results using a filament printer (Flash Forge Cre-
ator Pro) with ABS filament. All of the assembled models correspond

to their simulation and approximate the target surface well. Some

low amount of distortion can be seen, which is due to necessary

tolerances when fabricating pre-assembled joints.

Our fabrication results have a variety of uses, for instance acting

as lamp shades, vase decor (Figure 19) or even as a bag that can

carry light objects (Figure 1). On the bag, two ring tiles are manually

placed and fixed during optimization in order to attach the handles.

Table 1 summarizes the statistics for each fabricated result: size

of assembled printout, number of tiles and the number of fabricated

patches. The number of patches depends on both the model size and

the surface complexity. Models with high curvatures require more

patches (e.g. teddy bear). Note that Handbag1, Hangbag2, Lamp1

and Lamp2 refer respectively to the results in Figure 1, Figure 16e,

Figure 19 and Figure 16f. Lamp1 is also visible in the supplemental

material.

7.2 UI Control
We provide several controls to help users stylize their designs: orien-

tation and scale as well as using different tiles in different regions.

7.2.1 Scale and orientation fields. Our method allows the user to

edit both the size and orientation of the tiles. Figure 16 demonstrates

results in which the tiles are adapted to an input control field, which

consists of a scaling field and an orientation field, both specified

by the user. In the figure the scale field is color coded, and ranges

from 0.5 to 1.0. The streamlines in Figure 16a and 16b reveal the

orientation fields used on the two results. The user edits the orien-

tation field by sketching lines on the surface. A smooth orientation

field is generated by treating the sketch lines as constraints, using

ACM Transactions on Graphics, Vol. 36, No. 6, Article 175. Publication date: November 2017.



175:12 • Weikai Chen, Yuexin Ma, Sylvain Lefebvre, Shiqing Xin, Jonàs Martínez, and Wenping Wang

(a) (b) Target surface (c) Simulated result (d) Fabrication result (e) Fabrication result

(f) (g) Target surface (h) Simulated result (i) Fabrication result (j) Fabrication result

(k) (l) Target surface (m) Simulated result (n) Fabrication result (o) Fabrication result

Fig. 15. From left to right: input tiles, target surfaces, simulated results with each patch color coded and fabricated results (two views).

the implementation provided by [Diamanti et al. 2014]. The user

can paint desired scales directly onto the base surface using a brush

tool.

As can be seen in the simulation and printed results, the tiles

follow both the sizing and orientation fields while the result is a

dense, fabricable packing.

7.2.2 Global tile class control. Our approach lets the user specify

the ratios of different tile classes that appear in the result. Figure 17

shows a case where the ratio is changed to achieve different results.

This control is mainly achieved during the initialization step, when

the tile distribution is generated. We employ the strategy described

in [Wei 2010] for sampling from different classes.

7.2.3 Local tile class control. We let the user control the choice

of tiles locally, as illustrated in Figure 18. A brush tool allows the

user to paint the desired tile class id directly onto the surface. Tiles

can only appear in a region with a same class id. This allows to

customize the tile decors even further, as shown in Figure 18.

7.3 Comparison with gradient-free methods
We compare our approach to state of the art gradient-free opti-

mization algorithms in Figure 20. In particular, we test two global

optimization algorithms (ISRES [Runarsson and Yao 2005] andMLSL

[Rinnooy Kan and Timmer 1987]) and two local optimization ap-

proaches (COBYLA [Powell 1994] and SBPLX [Rowan 1990]). The

results of these algorithms are produced using the implementations

of the NLopt library [Johnson 2014]. We use the same initializa-

tion (Figure 20a) and the same objective functions for all tested

algorithms.

As seen in Figure 20, these generic optimizers perform poorly

in our case (Figure 20b and Figure 20c). As none of the optimizers

reached termination (i.e. a packing where the spacing constraint is

achieved), we stopped them after 2 hours of running time. The local

optimization methods perform better than their global counterparts

ACM Transactions on Graphics, Vol. 36, No. 6, Article 175. Publication date: November 2017.



Fabricable Tile Decors • 175:13

(a) Control field (b) Control field

(c) Simulation result (d) Simulation result

(e) Printed result (f) Printed result

Fig. 16. Results of control field editing. The user can edit both the size and
orientation of tiles.

(see Figure 20d and Figure 20e) since the initial tile layout provides

a good starting point. However, without an effective search strategy,

it is hard for these methods to find valid solutions and there remain

many unresolved tile overlaps as well as uncovered regions. Our

algorithm achieves a much better result thanks to dedicated heu-

ristics. We provide more details on the evolution of the objective

functions during optimization in supplemental material.

7.4 Timings
Table 2 summarizes the timing of our results. All the results are pro-

duced on computer with an Intel i7-4770 CPU and 16GB RAM. The

tile packing dominates the runtime. The timing is mostly influenced

by the number of tiles and the complexity of the target surface. The

printing time is mainly related to the surface area of target surface.

For instance, the vase took around 7 more hours to print than the

bear due to its larger surface.

8 LIMITATIONS AND CONCLUSIONS
Our approach lets anyone fabricate visually interesting objects by

decorating a surface with tiles. This mimics a popular way of impro-

ving a surface appearance by applying stickers and decals. Rather

Parameters Sphere Vase Bear Lamp1

Size (17,17,16) (17,17,27) (22,13,21) (27,27,17)

#T 102 126 147 83

#P 10 13 22 14

Parameters Lamp2 Handbag1 Handbag2

Size (27,27,17) (25,13,18) (25,13,18)

#T 90 122 101

#P 15 17 16

Table 1. Statistics of fabricated results (Figure 15 and Figure 16). Statistics
(from top to bottom) include size of assembled printout, number of tiles
packed and number of patches used for assembly. The size is represented
as (lenдth, width, heiдht ), all measured in centimeters.

Time Sphere Vase Bear Lamp1

tpack 8.15 9.23 15.16 6.57

tpatch 0.25 0.27 0.35 0.28

tpr int 36.1 52.0 42.6 37.1

tasm 8.5 13.2 18.7 9.1

Time Lamp2 Handbag1 Handbag2

tpack 7.12 11.32 10.14

tpatch 0.29 0.30 0.27

tpr int 37.5 37.8 36.9

tasm 9.9 10.6 10.1

Table 2. Timing of fabricated results (Figure 15 and Figure 16). For each
result, we show the timing of tile packing tpack , patch extraction tpatch ,
printing tpr int and assembling tasm . All timings are listed in minutes
expect tpr int which is in hours.

than synthesizing a complex 3D model difficult to print, our techni-

que is designed to allow for efficient fabrication: the final surface is

assembled from articulated patches that print flat, without support.

This makes them fabricable on home filament printers, and easy

to pack which maximizes utilization of powder-based printers, and

reduces shipment costs.

Due to the fabrication constraints, our

method cannot handle tiles which are thin

everywhere (as shown in the inset). These

do not offer sufficient space for inserting

joints. Our method tends to ignore small

scale surface details, e.g. the scales of a

dragon, as our tiles are relatively large to allow for fabrication.

While the assembly step is left to the user – and it does take

some time – we find the assembly to be an enjoyable process, that

gives the user a better sense of ownership on the part she customi-

zed. However, it would be interesting, as future work, to attempt

to further simplify this stage. Also, the main structural fragilities

are the articulated hinges. To obtain stronger objects it would be

interesting to investigate whether we could print solid connectors

and deform them with heat, as in [Sageman-Furnas et al. 2015]. As

the scale of input surface grows, the number of patches increases

ACM Transactions on Graphics, Vol. 36, No. 6, Article 175. Publication date: November 2017.



175:14 • Weikai Chen, Yuexin Ma, Sylvain Lefebvre, Shiqing Xin, Jonàs Martínez, and Wenping Wang

(a) Input tiles (b) Scaling field (c) Equal ratio (d) More leaves (e) More clovers

Fig. 17. Result of varying the percentage of each tile class. (a) and (b) shows the input tile set (from top to bottom: leaf, flower and clover) and the underlying
scaling field. (c) is a result where each class appears equally, while in (d) leaves appears with 70% probability and in (e) clovers appear with 70% probability.

(a) (b)

Fig. 18. Results of user-specified tile mixture. The user can restrict certain
tile class to grow only on target regions.

Fig. 19. Fabrication results used for home decor.

– since the printer bed size limits the maximal extent of a patch.

Tolerance required in the fabrication of joints may accumulate and

increasingly lead to larger distortion in the final assembly. We will

also explore the optimization of joint length for reducing global

deformation. Finally, it would be interesting to study whether a

final assembly could be made stable by gluing or constraining the

motion of a small subset of hinges.

Using our technique, users without prior expertise can model

objects that fully exploit advanced possibilities of 3D printing: em-

bedding pre-assembled hinges and snap-fit joints in a model, as well

as producing freeform, unusual geometries. We hope our approach

will find a wide audience, and we will make the application available

for everyone to enjoy.

ACKNOWLEDGMENT
We would like to thank Lei Chu for photographing the printouts

and anonymous reviewers for their insightful comments. This work

is supported by Hong Kong RGC (GRF 17208214), ERC grant Shape-

Forge (StG-2012-307877) and NSFC (61772016).

REFERENCES

J. O’Rourke. 1998. Computational geometry in C. Cambridge university press.

M. Attene. 2015. Shapes in a Box: Disassembling 3D Objects for Efficient Packing and

Fabrication. Computer Graphics Forum 34, 8 (2015), 64–76.

M. Bächer, E. Whiting, B. Bickel, and O. Sorkine-Hornung. 2014. Spin-It: Optimizing

Moment of Inertia for Spinnable Objects. ACM Trans. Graph. 33, 4 (2014), 96:1–96:10.
W. Chen, X. Zhang, S. Xin, Y. Xia, S. Lefebvre, and W. Wang. 2016. Synthesis of Filigrees

for Digital Fabrication. ACM Trans. Graph. 35, 4 (2016), 1–13.
X. Chen, H. Zhang, J. Lin, R. Hu, L. Lu, Q. Huang, B. Benes, D. Cohen-Or, and B. Chen.

2015. Dapper: decompose-and-pack for 3D printing. ACM Trans. Graph. 34, 6 (2015),
1–12.

P. Cignoni, N. Pietroni, L. Malomo, and R. Scopigno. 2014. Field-aligned mesh joinery.

ACM Trans. Graph. 33, 1 (2014), 1–12.
E. Coumans. 2009. Bullet Physics. (2009). http://bulletphysics.org/wordpress/.

O. Diamanti, A. Vaxman, D. Panozzo, and O. Sorkine-Hornung. 2014. Designing N -

PolyVector Fields with Complex Polynomials. Computer Graphics Forum 33, 5 (2014),

1–11.

J. Dumas, A. Lu, S. Lefebvre, J. Wu, and C. Dick. 2015. By-Example Synthesis of

Structurally Sound Patterns. ACM Trans. Graph. 34, 4 (2015), 12.
A. Garg, A. O. Sageman-Furnas, B. Deng, Y. Yue, E. Grinspun, M. Pauly, and M. Wardet-

zky. 2014. Wire Mesh Design. ACM Trans. Graph. 33, 4, Article 66 (2014), 12 pages.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 175. Publication date: November 2017.

http://bulletphysics.org/wordpress/


Fabricable Tile Decors • 175:15

(a) Input tile layout (b) ISRES (c) MLSL (d) COBYLA (e) SBPLX (f) Ours

Fig. 20. Comparisons with other generic derivative-free optimization algorithms. We use the same tile initialization (a) as the input. (b) ISRES and (c) MLSL
are global-optimization algorithms while (d) COBYLA and (e) SBPLX are algorithms for local optimization.

W. Hu, Z. Chen, H. Pan, Y. Yu, E. Grinspun, and W. Wang. 2016. Surface Mosaic

Synthesis With Irregular Tiles. IEEE transactions on visualization and computer
graphics 22, 3 (2016), 1302–1313.

E. Iarussi, W. Li, and A. Bousseau. 2015. WrapIt: Computer-assisted Crafting of Wire

Wrapped Jewelry. ACM Trans. Graph. 34, 6, Article 221 (2015), 8 pages.
Y. Igarashi, T. Igarashi, and J. Mitani. 2016. Computational design of iris folding patterns.

Computational Visual Media 2, 4 (2016), 321–327.
A. Jacobson, D. Panozzo, and others. 2016. libigl: A simple C++ geometry processing

library. (2016). http://libigl.github.io/libigl/.

S. G. Johnson. 2014. The NLopt nonlinear-optimization package. (2014). http://ab-

initio.mit.edu/nlopt.

D. Julius, V. Kraevoy, and A. Sheffer. 2005. D-Charts: Quasi-Developable Mesh Segmen-

tation. In Computer Graphics Forum, Vol. 24. Wiley Online Library, 581–590.

M. Konaković, K. Crane, B. Deng, S. Bouaziz, D. Piker, and M. Pauly. 2016. Beyond

developable: computational design and fabrication with auxetic materials. ACM
Trans. Graph. 35, 4 (2016), 89.

T.-H. Kwok, C. C. Wang, D. Deng, Y. Zhang, and Y. Chen. 2015. Four-dimensional prin-

ting for freeform surfaces: design optimization of origami and kirigami structures.

Journal of Mechanical Design 137, 11 (2015), 111413.

Y.-K. Lai, S.-M. Hu, and R. R. Martin. 2006. Surface mosaics. The Visual Computer 22,
9-11 (2006), 604–611.

S. Lefebvre, S. Hornus, and F. Neyret. 2005. Texture Sprites: Texture Elements Splat-

ted on Surfaces. In ACM Symposium on Interactive 3D Graphics and Games. ACM
SIGGRAPH, ACM Press.

D. Li, D. I. Levin, W. Matusik, and C. Zheng. 2016. Acoustic Voxels: Computational

Optimization of Modular Acoustic Filters. ACM Trans. Graph. 35, 4 (2016).
L. Luo, I. Baran, S. Rusinkiewicz, and W. Matusik. 2012. Chopper: Partitioning Models

Into 3D-Printable Parts. ACM Trans. Graph. 31, 6 (2012), 1.
C. Ma, L.-Y. Wei, and X. Tong. 2011. Discrete Element Textures. ACM Trans. Graph. 30,

4 (2011), 62:1–62:10.

E. Miguel, M. Lepoutre, and B. Bickel. 2016. Computational Design of Stable Planar-Rod

Structures. ACM Trans. Graph. 35, 4 (2016), 1–11.
J. Mitani and H. Suzuki. 2004. Making papercraft toys from meshes using strip-based

approximate unfolding. ACM Trans. Graph. 23, 3 (2004), 259.
V. A. D. Passos and M. Walter. 2009. 3D virtual mosaics: Opus Palladium and mixed

styles. The Visual Computer 25, 10 (2009), 939–946.
V. D. Passos and M. Walter. 2008. 3D mosaics with variable-sized tiles. The Visual

Computer 24, 7-9 (2008), 617–623.
M. J. Powell. 1994. A direct search optimization method that models the objective

and constraint functions by linear interpolation. In Advances in optimization and
numerical analysis. Springer, 51–67.

R. Prévost, E. Whiting, S. Lefebvre, and O. Sorkine-Hornung. 2013. Make it stand:

balancing shapes for 3D fabrication. ACM Trans. Graph. 32, 4 (2013), 81:1–81:10.
A. H. Rinnooy Kan and G. Timmer. 1987. Stochastic global optimization methods Part

I: Clustering methods. Mathematical programming 39, 1 (1987), 27–56.

J. Rosenkrantz and J. Louis-Rosenberg. 2007. Neverous System. (2007). http://

n-e-r-v-o-u-s.com/blog/.

R. Roveri, A. C. Öztireli, S. Martin, B. Solenthaler, and M. Gross. 2015. Example based

repetitive structure synthesis. In Computer Graphics Forum, Vol. 34. Wiley Online

Library, 39–52.

T. H. Rowan. 1990. Functional stability analysis of numerical algorithms. (1990).

T. P. Runarsson and X. Yao. 2005. Search biases in constrained evolutionary optimization.

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)

35, 2 (2005), 233–243.

A. O. Sageman-Furnas, N. Umetani, and R. Schmidt. 2015. Meltables: fabrication of

complex 3d curves by melting. In SIGGRAPH Asia 2015 Technical Briefs. ACM, 14.

R. Schmidt, C. Grimm, and B. Wyvill. 2006. Interactive Decal Compositing with Discrete

Exponential Maps. In ACM Trans. Graph. ACM, 605–613.

C. Schumacher, B. Thomaszewski, and M. Gross. 2016. Stenciling: Designing

Structurally-Sound Surfaces with Decorative Patterns. In Computer Graphics Forum,

Vol. 35. Wiley Online Library, 101–110.

L. Shapira, A. Shamir, and D. Cohen-Or. 2008. Consistent mesh partitioning and

skeletonisation using the shape diameter function. The Visual Computer 24, 4 (2008),
249–259.

I. Shatz, A. Tal, and G. Leifman. 2006. Paper craft models from meshes. The Visual
Computer 22, 9-11 (2006), 825–834.

M. Shugrina, A. Shamir, and W. Matusik. 2015. Fab forms: customizable objects for

fabrication with validity and geometry caching. ACM Trans. Graph. 34, 4 (2015),
100.

P. Song, B. Deng, Z. Wang, Z. Dong, W. Li, C.-W. Fu, and L. Liu. 2016. CofiFab: Coarse-

To-Fine Fabrication of Large 3D Objects. ACM Trans. Graph. 35, 4 (2016), 1–11.
M. Takezawa, T. Imai, K. Shida, and T. Maekawa. 2016. Fabrication of freeform objects

by principal strips. ACM Trans. Graph. 35, 6 (2016), 225.
C. Tang, P. Bo, J. Wallner, and H. Pottmann. 2016. Interactive design of developable

surfaces. ACM Trans. Graph. 35, 2 (2016), 12.
N. Umetani, A. Panotopoulou, R. Schmidt, and E. Whiting. 2016. Printone: Interactive

Resonance Simulation for Free-form Print-wind Instrument Design. ACM Trans.
Graph. 35, 6, Article 184 (2016), 14 pages.

J. Vanek, J. A. G. Galicia, B. Benes, R. Měch, N. Carr, O. Stava, and G. S. Miller. 2014.

PackMerger: A 3D Print Volume Optimizer. Computer Graphics Forum 33, 6 (2014),

322–332.

C. C. Wang. 2008. A least-norm approach to flattenable mesh surface processing. In

Shape Modeling and Applications, 2008. SMI 2008. IEEE International Conference on.
IEEE, 131–138.

C. C. Wang. 2014. LDNI-based Solid Modeling. (2014).

http://ldnibasedsolidmodeling.sourceforge.net/.

W. M. Wang, C. Zanni, and L. Kobbelt. 2016b. Improved Surface Quality in 3D Printing

by Optimizing the Printing Direction. Computer Graphics Forum 35, 2 (2016), 59–70.

X. Wang, T. H. Le, X. Ying, Q. Sun, and Y. He. 2016a. User controllable anisotropic

shape distribution on 3D meshes. Computational Visual Media 2, 4 (2016), 305–319.
L.-Y. Wei. 2010. Multi-class blue noise sampling. ACM Trans. Graph. 29, 4 (2010), 79.
J. Zehnder, S. Coros, and B. Thomaszewski. 2016. Designing structurally-sound orna-

mental curve networks. ACM Trans. Graph. 35, 4 (2016), 99.
Y. Zhang, C. C. Wang, and K. Ramani. 2016. Optimal fitting of strain-controlled flattena-

ble mesh surfaces. The International Journal of Advanced Manufacturing Technology
(2016), 1–15.

H. Zhao, L. Lu, Y. Wei, D. Lischinski, A. Sharf, D. Cohen-Or, and B. Chen. 2016. Printed

Perforated Lampshades for Continuous Projective Images. ACM Trans. Graph. 35, 5
(2016), 1–11.

S. Zhou, C. Jiang, and S. Lefebvre. 2014. Topology-constrained synthesis of vector

patterns. ACM Trans. Graph. 33, 6 (2014), 1–11.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 175. Publication date: November 2017.

http://n-e-r-v-o-u-s.com/blog/
http://n-e-r-v-o-u-s.com/blog/

	Abstract
	1 Introduction
	2 Previous Work
	3 Overview
	3.1 Pipeline overview

	4 Tile Packing
	4.1 Tile representation
	4.2 Initialization
	4.3 Attraction phase
	4.4 Repulsion phase

	5 Patch Extraction
	5.1 Extracting foldable patches
	5.2 Graph partitioning
	5.3 Snap-fits optimization

	6 Implementation and Fabrication
	6.1 3D model generation
	6.2 Optimizations

	7 Results
	7.1 Fabrication
	7.2 UI Control
	7.3 Comparison with gradient-free methods
	7.4 Timings

	8 Limitations and Conclusions
	References

